Norm Prokup

Cornell University
PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

Thank you for watching the video.

To unlock all 5,300 videos, start your free trial.

Asymptotes of Secant, Cosecant, and Cotangent - Problem 1

Norm Prokup
Norm Prokup

Cornell University
PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

Share

I want to talk about the asymptotes and x intercepts of this function y equals 5 secant 1/6 x. Now in order to analyze both the asymptotes in the intercepts I want to make a little substitution I’m going to call this theta.

And so this function becomes 5 secant theta and of course 5 secant theta is the same as 5 over cosine theta. Now if you look at this function this is never going to equal 0 the only way it’s going to equal is if the numerator equals 0 and the numerator is 5.

So this is never going to equal 0 and that means no x intercepts. Now what about vertical asymptotes, we will have vertical asymptotes when cosine theta equals 0 and we already know that that happens at theta equals pi over 2 plus and pi.

Now theta was the substitution let’s put 1/6 x back in there. 1/6 x equals pi over 2 plus n pi. So to find what x has to be I multiply everything by 6 and I get x equals 3 pi plus 6 n pi. So that means that the vertical asymptotes are x equals 3 pi, 9 pi, 15 pi and so on. -3 pi, -9 pi, -15 pi and so on.

© 2016 Brightstorm, Inc. All Rights Reserved. Terms · Privacy