SSS and SAS - Problem 4

Transcript

A common problem for determining if you have two congruent triangles is to have triangles within a shape. So here we’ve got 1, 2, 3 triangles inside a rectangle.

Look at what we are given. We know that F is the midpoint, so the first thing that I’m going to do is I’m going to mark that EF and FG are congruent.

The second thing that you’re given is that you have an isosceles triangle here. Because if base angles are congruent that means that those two legs must also be congruent. So we have triangle EFI. EFI is talking about this triangle right here. Is it congruent to any other triangle in this box? And the answer is yes. We see that this triangle right here has three sides that are congruent to the three sides in this triangle. So what corresponds to angle E?

Angle E corresponds to angle G, how do I know that? E has one mark and two marks adjacent to it. G is the only angle over here that has one mark and two marks adjacent. So G is going to go first.

Next we have angle F. Angle F has one mark and three marks adjacent to it. And that’s the same in this triangle as well. So F is going to go second. Which means your remaining vertex is H, so triangle EFI is congruent to triangle GFH by, what short-cut do we use? We knew that 1, 2, 3 sides were congruent to 1, 2, 3 sides of the other triangle, so side-side-side.

Tags
triangle congruence side side side side angle side