Unit
Sequences and Series
MA, Stanford University
Teaching in the San Francisco Bay Area
Alissa is currently a teacher in the San Francisco Bay Area and Brightstorm users love her clear, concise explanations of tough concepts
To unlock all 5,300 videos, start your free trial.
MA, Stanford University
Teaching in the San Francisco Bay Area
Alissa is currently a teacher in the San Francisco Bay Area and Brightstorm users love her clear, concise explanations of tough concepts
For math induction, first, show your equation is true for the case n = 1 by substituting in one. Next, we write an assumption that the statement is also true for the kth term and replace all n's with k's. Third, we show that the statement is true for the "k + 1"th term, which means adding one more term, rewriting all of your k's with "k+1's" , and the simplifying. Finally, showing that the statement is true for "k + 1 " terms is sufficient to prove that it is true for all values of n.
Transcript Coming Soon!