Like what you saw?
Start your free trial and get immediate access to:
Watch 1-minute preview of this video


Get immediate access to:
Your video will begin after this quick intro to Brightstorm.

Law of Cooling 5,086 views

Teacher/Instructor Matt Jones
Matt Jones

M.Ed., George Washington University
Dept. chair at a high school

Matt is currently the department chair at a high school in San Francisco. In his spare time, Matt enjoys spending time outdoors with his wife and two kids.

Newton's law of cooling states that a hot object will transfer its heat to a cooler object faster depending on how cold that object is. Stated mathematically, it says that the rate of change of the hot object is proportional to the temperature difference between it and its surroundings.

Law of Cooling sometimes it's called Newton's law of cooling because this was first written about by Newton and identified by Newton and basically what this says is that the rate of cooling of an object is proportional to the temperature difference between the object and its surroundings and that should make a lot of sense.

If I take a can of soda and I put in the refrigerator it's going to cool down at a certain rate, if I put it in the freezer it's going to cool down in a much faster rate okay we can show that here by basically saying the rate of cooling is proportional to the difference in temperature between the object being cooled and it's environment and there are couple other things, the reason we say proportional is because it's going to depend on things like the conductivity of the environment in other words are we putting it in in water or next to a solid something like copper that has high conductivity that's going to increase the rate of cooling or air something that is got a lower rate of cooling if you put that can of soda in ice water it's going to cool a lot faster than if I put it in a freezer surrounded by air because of the conductivity but regardless of those other variables we can always assume that the rate of cooling is going to be proportional to the distance in difference in temperature between what's being cooled and the environment around it that's cooling it off.