##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- FREE study tips and eBooks on various topics

# The Sine Addition Formulas - Problem 1

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

We're talking about the sine addition formulas. Right now I want to do an example that uses the sine of a sum formula and if you recall the sine of a sum is the sine of alpha plus beta equals and the way to remember the sine of a sum formula is sine cosine cosine sine, sine alpha cosine beta, cosine alpha sine beta and unlike cosine, the cosine formulas, the sine formulas have the same sign, plus or minus, so think 's' for same.

Now this formula, this expression here is exactly in the form sine, cosine sine so I can use the sine of a sum formula in reverse where alpha is 5 pi over 12 and beta is pi over 12. So this expression becomes sine of 5 pi over 12 plus pi over 12 which is the sine of 6 pi over 12 or pi over 2. What's the sine of pi over 2? 1. So this whole expression simplifies to just 1.

I have another example; evaluate the sine of 105 degrees. Now here we want to try to find exact values of possible and it is possible because 105 degrees can be expressed as 60 degrees plus 45 degrees, so sine of 60 degrees and 45 degrees and I can use the sine of a sum. Sine, cosine, cosine, sine and because it's a plus I have a plus in the middle, just fill in the values and you should know these are all special values of sine and cosine.

Sine of 60 degrees root 3 over 2, cosine of 45 root 2 over 2, cosine of 60 is 1/2 and sine of 45 degrees root 2 over 2, so you get root 6 over 4 plus root 2 over 4 which is root 6 plus root 2 all over 4 and that's your answer. Remember sine, cosine, cosine, sine, plus stays plus.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

##### Concept (1)

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete