##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- Attend and watch FREE live webinar on useful topics

# The Inverse Cosine Function - Concept

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

Since cosine is not a one-to-one function, the domain must be limited to 0 to pi, which is called the restricted cosine function. The **inverse cosine function** is written as cos^-1(x) or arccos(x). Inverse functions swap x- and y-values, so the range of inverse cosine is 0 to pi and the domain is -1 to 1. When evaluating problems, use identities or start from the inside function.

I want to talk about the inverse cosine function. We start with the function y equals cosine x I have a graph here and you can see that y equals cosine x is very much not a 1 to 1 function and we can only find the inverses of 1 to 1 functions. So we have to restrict the domain of the cosine function and the convention is to restrict it to this interval from 0 to pi so let me draw the restricted cosine function. Just this piece of the cosine graph up to and including pi and down to and including 0. So y equals cosine x for x between 0 and pi that's the restricted cosine function it is 1 to 1 and so we can invert it.

And we call this inverse y equals inverse cosine of x that's how this is read this superscript negative 1 is not an exponent it means the inverse of cosine and this function is also called y equals arc cosine x. Now I want to graph our cosine or inverse cosine and so I start with key points of the cosine curve. I've got 0, 1 pi over 2, 0 and pi negative 1, these are these 3 key points and remember when you're graphing an inverse function you just interchange the x and y coordinates so the point 0, 1 becomes 1, 0, the point pi over 2, 0 becomes 0 pi over 2 and the point pi negative 1 becomes negative 1 pi and that's going to be somewhere here. Let me connect these, keeping that the graph of a function and it's inverse have to be symmetric about the line y=x so this is a pretty good graph.

Now very important the domain, I'll mark negative 1 here, the domain of the inverse cosine function is between negative 1 and 1 very important. And think about that the cosine function can only output numbers between negative 1 and 1 so it makes sense that the domain of the inverse cosine function is this interval and the range is going to be between 0 and pi because that was the domain of the restricted cosine function and that's it. This is the graph of the inverse cosine domain between negative 1 and 1, range between 0 and pi and it has these 3 key points.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

###### Get Peer Support on User Forum

Peer helping is a great way to learn. Join your peers to ask & answer questions and share ideas.

##### Concept (1)

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete