##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- Attend and watch FREE live webinar on useful topics

# The Dot Product of Vectors - Problem 2

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

We are talking about the dot product of vectors. Let U equal -4,5, v equal 3,6 and w equal 2,-5. Just for a review, let’s compute v plus w. Remember when you add two vectors, you add them component wise. So v plus w would be 3 plus 2, 5 and 6 plus -5, 1. So when I calculate U.V plus w, the v plus w is in parenthesis. That needs to be computed first, but I’ve just done that. So this is going to be U which is -4, 5.5,1.

Now the dot product of these two vectors is going to be -4 times 5, plus 5 times 1. And that’s -20 plus 5, -15. Now let’s compare that to this. What’s U.V? Let me calculate that first. U.V is going to be -4 times 3, -12, put those in parenthesis plus 5 times 6.

So plus, 30, plus U.W. U.W would be -4 times 2, -8 plus 5 times -5. -25. So we are going to get 18 plus -33. This is -15. You might have expected that because what this looks like is an expanded version of this. It looks like we distributed U over the v plus w. And that’s kind of what’s happened here although we don’t have a distributive property for the dot product yet. But this shows that the distributive property does work. That U does distribute over addition and it also happens to distribute over subtraction. So you can use that result in the future.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

###### Get Peer Support on User Forum

Peer helping is a great way to learn. Join your peers to ask & answer questions and share ideas.

##### Concept (1)

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete