##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- FREE study tips and eBooks on various topics

# The Dot Product of Vectors - Problem 1

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

Let’s use some exercises with the dot product. Let u equal -4,5, v equals 3,6 and w equals 2,-5 a component form. Let’s take the dot product of u and v. Remember the way you calculate the dot product, is you multiply the first components of u and v in that order, and then you add to the second components of u and v.

So I’m going to multiply negative 4 and 3 plus 5 and 6. So here I get -12 plus 30. And that’s just 18. So U.V is 18. Now what about v.u? Here strictly speaking, you should multiply the components in the order that the product is written. So for V.U, I would multiply 3 times -4, the 3 comes first. And 6 times 5, the 6 comes first. But you are going to get the same result, because multiplication of real numbers is commutative. So you’ll get -12 plus 30, you’ll get 18.

V.W, well v is 3,6 and w is 2,-5. So it's going to be 3 times 2, plus 6 times -5. That’s going to be 6 minus 30 -24. What about W.V? I think we know what’s going to happen but let’s calculated anyway. Remember when you calculate W.V, the components of W come first. So it’s going to be 2 times 3 plus -5 times 6.

So I get 6 minus 30 again -24. So I think what this exercise demonstrates is that the dot product is commutative. Commutativity means that the order of the product doesn’t matter U.V, equals V.U.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

##### Concept (1)

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete