##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- Attend and watch FREE live webinar on useful topics

# The Angle Between Planes - Problem 2

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

How do you find the angle between two planes? Here we have two planes; M1 and M2. M1 is given by the equation 2x plus 2y minus z equals 10, and M2 is 6x minus 3y plus 2z equals 24. First, to find the angle between planes you want to find the angle between their normal vectors.

Let’s observe that for plane 1, the normal vector is going to be <2, 2, -1>. And for plane 2, the normal vector is going to be <6, -3, 2>. How do you find the angle between two vectors? You take the dot product. Remember the formula cosine theta equals n1.n2 over the product of their magnitudes.

First thing I want to do is calculate their magnitudes. The magnitude of n1, 2² or 4 plus 4 plus 1. Square root of that. That’s the square root of 9, which is 3. And the magnitude of n2 is 6² or 36 plus 9 plus 4. The square root of 36 plus 9 plus 4. That’s 13 plus 36, 49 and root 49 is 7. This is going to be n1.n2. 2 times 6, 12, plus -6, plus -2, over 3 times 7. This is 12 times 8 which is 4 so I have 4 over 21.

Cosine of the angle between these two vectors is 4 over 21, so theta is going to be inverse cosine of 4 over 21. Let’s do that on a calculator. Inverse cosine of 4 over 21, I get 79 degrees approximately. So the angle between the two planes is 79 degrees.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

##### Concept (1)

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete