##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- FREE study tips and eBooks on various topics

# Parametric Equations and Motion - Problem 2

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

Parametric equations are great for modelling motion, but they can also just be used to describe a curve. Consider the parametric equation; x equals 10 cosine t, y equals 6 sine t, for t between 0 and 2 pi. Let's eliminate the parameter to obtain a rectangular equation for the curve. That will help us identify what the shape is, so that we can graph it.

If x equals 10 cosine t, let's observe that x over 10 equals cosine t. If y 6 sine t, y over 6 equals sine t. Now one thing I know about sine and cosine, is that when you square them, and add the results together, you get 1 cosine squared, plus sine squared equals 1. If I substitute x over 10 for cosine, I get x² over 100. If I substitute y over 6 for sine, I get y² over 36, and that should look very familiar to you.

This is an ellipse, so the shape of the graph is going to be an ellipse. It's very helpful for when I'm going to actually graphing. It's an ellipse centered at the origin. Let's plot points, and then we'll be ready to graph the curve.

Now t goes between 0 and 2 pi, so let me just plot some easy points like 0, pi over 2, pi, 3 pi over, and 2 pi. Now cosine of 0 is 1, so 10 cosine 0 is going to be 10. Sine 0 is 0, so y will be 0. Let's observe that 2 pi has the same sine and cosine values, so we're going to get the same point when t equals 2 pi.

Now for pi over 2, cosine pi over 2 is 0, so this is 0. Sine of pi over 2 is 1, so I get 6. For pi, cosine is -1, I get -10 and sine is 0. For 3 pi over 2, cosine is 0, sine is -1 so I get -6. Let's plot these points. There's really only four points, these four. This one is the same as the first, but it's good to know that in the end, this particle or whatever we're plotting out comes back to the original point it started at.

Let's plot 10, 0. This is t equals 0, and then 0, 6. This is t equals pi over 2. Then -10, 0, that happens at t equals pi. Then 0, -6, that's t equals 3 pi over 2. Of course it returns back to this point at t equals 2 pi. It's an ellipse, so I don't need to plot anymore points. I can just draw the shape. It looks something like this, and that's it. If you want to indicate direction, you can throw in a couple of arrows here and there. The object starts here at 10, and then just orbits around the origin, and then comes back again, and stops.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

##### Concept (1)

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete