##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- FREE study tips and eBooks on various topics

# Lines in 3D - Problem 3

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

We’re talking about lines in space. Let’s take a look at anther problem; where does the line <x, y, z> equals <6, 4, 10> plus t times <1, 2, -5> intersect the x,y plane? I’ve drawn a graph here. A quick sketch that shows the <x, y, z> space, the line, the point that it passes through <6, 4, 10>. And I wanted to point out that the x,y plane is down here.

Another way of describing the x,y plane is to call it z equals 0. Of course, the reason for that is that every point on the xy plane has a z coordinate of 0. So that’s an identifying characteristic of the plane. What I’m going to do is I’m going to return this into parametric equations. So I’ll get x equals 6 plus t, y equals 4 plus 2t and z equals 10 plus -5t. I need to find out for what parameter value t, z equals 0, because that’s where the line’s going to cross, the x,y plane.

So I set this equal to 0. I get 10 equals 5t, t equals 2. So I need to plug t equals 2 into these two equations. I get x equals 6 plus 2, 8, and y equals 4 plus, 2 times 2, 4, also 8. And so my coordinates are, <8, 8, 0>. It was really that easy. <8, 8, 0> is the point where this line crosses the x, y plane.

If you wanted to find where it crosses other planes, just use the equation of that plane. Like for example the y, z plane would be equals 0, or the x,z plane would be y equals 0. Just substitute 0 for the appropriate coordinate. Find the parameter value and then find the other coordinates, like we did here.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

##### Concept (1)

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete