##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- FREE study tips and eBooks on various topics

# Introduction to the 3D Coordinate System - Problem 2

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

We're talking about the 3D coordinate system. One of the first kinds of shapes you learned about is a sphere. Here is the definition. Given point C in space, and r a number greater than 0, the set of all points that are a distance r from C is called a sphere. R is the radius of the sphere, and C is the center. So here is the problem. Let's find an equation of the sphere centered at the origin with radius 12.

So I've got a picture here. Sphere centered at the origin, and I want my radius to be 12. So this distance here is going to be 12. Now I've also labelled a random point on this sphere, and given it coordinates x, y, and z. So let me make the observation that if the radius is 12, then the magnitude of vector OP is 12.

Now vector OP is a position vector, and it's going to have components the same as the coordinates of its endpoint. So it's going to be x., y, z. That means that, the length of the vector is going to be the square root of the square of each of these components; x² plus y² plus z² that equals 12. So we square both sides. We get an equation, it looks very familiar.

Now if I covered up the z², this would look a lot like the equation of the circle centered at the origin. So the equation of the sphere, just has one more term. X² plus y² plus z² equals 144, and notice the radius is squared here too.

So in general, a sphere centered at the origin, with radius r, has equation x² plus y² plus z² equals r².

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (1)

Please Sign in or Sign up to add your comment.

## ·

Delete

## Adan Cisneros · 9 months, 2 weeks ago

Great example! Thank you.