##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- Attend and watch FREE live webinar on useful topics

# Addition and Scalar Multiplication of Vectors - Problem 2

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

Recall what the opposite of a number is; for example the opposite of 5 is -5. It's just -1 times that number. Now that we have scalar multiplication, we can do the same thing with vectors. We can talk about the opposite of a vector u, and we define it as the opposite of vector u is scalar -1 times u. So for example if u is -9,4 then the opposite of that would be +9,-4, you just multiply -1 by each of the components.

Now, once you have the idea of an opposite, we can define vector subtraction. U minus v is defined as u plus the opposite of v, let me make that look more like a v. So if I have the components of u as u1,u2 and v as v1,v2, then u minus v becomes u1 minus v1, u2 minus v2. So let's try this out in a problem.

The problem says; u equal 5,3 and vector v is -2,1. Compute 2u minus v. So first I'm going to calculate 2u, the scalar of multiple 2 times u. And that's going to be 2 times 5 or 10 and 2 times 3 or 6, minus vector v -2,1. And our rule for subtraction tells us that we subtract component-wise. So this is going to be 10 minus -2, or 10 plus 2, 12, and 6 minus 1, 5 so 12,5.

Now notice here I'm calculating v minus 2u, a very similar difference, but it's the opposite difference, so let's see what it gives us. We have v which is -2, 1 minus 2u, which I already calculated is 10,6. So when I subtract again I subtract component-wise, -2 minus 10 is -12 and 1 minus 6, -5. So it probably won't surprise you that v minus 2u is literally the opposite of 2u minus v.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

###### Get Peer Support on User Forum

Peer helping is a great way to learn. Join your peers to ask & answer questions and share ideas.

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete