##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- FREE study tips and eBooks on various topics

# Intercepts and Asymptotes of Tangent Functions - Problem 2

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

We’re finding the intercepts and asymptotes of a tangent function. Let’s do this one; y equals 1/3 tangent of pi over 2x.

First thing I want to do is make a substitution, theta equals pi over 2x, because remember tangent theta equals zero when theta is an integer multiple of pi. Theta equals nPi. So then I can substitute back. Pi over 2 x equals nPi and in order to solve for x I multiply both sides by 2 over pi, pi's cancel, over here and I get x equals 2n.

Tangent is going to be zero when x is for example, zero, 2, 4, 6 and so on and the intercepts are going to be (0,0), (2,0), (4,0) and so on. Even numbers comma zero.

What about the asymptotes? Tangent theta is undefined when theta is pi over 2 plus nPi. Again we go back to theta equals pi over 2x. I substitute pi over 2x equals pi over 2 plus nPi and I just multiply through by 2 over pi again, same trick. Just be careful because you’ve go to distribute this 2 over pi over both of these terms. Pi over 2 times 2 over pi is 1 and nPi times 2 over pi is 2n. So the asymptotes are going to be x equals, and of course they’ll be many of them, 1, 3, 5, 7, and so on. Also x equals -1, -3, -5, -7 and so on. All the odd numbers, those will be the asymptotes.

Remember this trick, set theta equal to zero and remember that tangent theta equals zero when theta equals n pi and tangent’s undefined when theta is pi over 2 plus n pi.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete