##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- FREE study tips and eBooks on various topics

# The Cross Product of Vectors - Problem 2

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

I want to prove a really important property of the cross product. So we have vectors u and v from a previous example I want to show that they're cross products. u cross v is perpendicular to both u and v. This is a really important property. We actually calculated u cross v in a previous example. This was our answer; i minus 4j plus 5k.

And the way I’m going to show that u cross v is perpendicular to u or v, is I’m going to take the dot product of the two vectors. I have to do both of these. I have to show u cross v is perpendicular to u. So I’ll start by taking the dot product of u cross v and u, then I’ll put those into component form.

U cross v is <1, -4, 5> and u is <4, 1, 0>. And so the dot product is going to be 4 minus 4 plus 0, which is 0. Therefore u cross v is perpendicular to u, so that’s what we’ve just shown. Remember if the dot product to two vectors is 0, the two vectors are perpendicular.

And then let’s take u cross v dot v. You cross v is again <1, -4, 5> and v is <-5, 0, 1>. So the dot product is -5 plus 0 plus 5 also 0. So u cross v is perpendicular to v.

So this is a really important property about the cross product. First of all the cross product is the kind of multiplication. And one of the things you probably notice about vectors is, multiplication is strictly business. We have actually three kinds of product. We have the scalar product of a vector, we have the dot product and we have the cross product.

Now the cross product is the only product of vectors that results in a vector. This is a vector and it's a product of these two vectors. And it’s important that you know that what kind of vector you get is perpendicular to the original two, not always happens with the cross products.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

##### Concept (1)

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete