##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- Attend and watch FREE live webinar on useful topics

# Invertible Square Matrices and Determinants - Problem 2

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

How do you tell if a matrix is invertible? For example is this matrix invertible? Well we have a result that says square matrix a is invertible, if and only if its determinant is not 0. So you have to take its determinant to tell.

Determinant of a is; 2 5 3, -15 10 18, 20 50 30. Now, the first thing I want to observe is that it's a 3 by 3 determinant. These are hard in general to evaluate. I want to use some real operations or column operations to simplify it. I'm noticing a common factor along the bottom row, so I'm going to pull out that factor of 10 out of the determinant. Remember that's one of the real operations you can do that. 2 5 3, -15 10 18 and I'll be left with 2 5 3.

In our previous example, we showed that whenever 2 rows or 2 columns are identical, the determinant is going to be 0. This is just going to be 10 times 0 which is 0. Thus the determinant of a is 0 and it's not invertible.

Now let's if we can generalize this a little bit. Whenever one row is a constant multiple of another row, in a matrix, its determinant will always be 0 and it will be invertible. The same goes for columns, if any column is a constant multiple of another column, the determinant is going to be 0 and the matrix is not invertible.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

###### Get Peer Support on User Forum

Peer helping is a great way to learn. Join your peers to ask & answer questions and share ideas.

##### Sample Problems (2)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete