Like what you saw?
Create FREE Account and:
 Watch all FREE content in 21 subjects(388 videos for 23 hours)
 FREE advice on how to get better grades at school from an expert
 FREE study tips and eBooks on various topics
Arithmetic Series  Problem 4
Carl Horowitz
Carl Horowitz
University of Michigan
Runs his own tutoring company
Carl taught upperlevel math in several schools and currently runs his own tutoring company. He bets that no one can beat his love for intensive outdoor activities!
One other application of the arithmetic series is when we actually know what the sum is going to be and we want to figure out how many terms are needed to make that sum.
So as always we're going to go to our formula to figure out exactly how this works and our formula for our arithmetic series is s sub n is equal to n over 2 a1 plus an. And I know this is an arithmetic series because going from 5 to 7 we add 2 and then going from 7 to 9 I add 2 again, so there's that same difference, therefore it's an arithmetic series.
For this particular equation, we need to know the first term, last term and the number of terms. We're being asked how many terms are, so we obviously don't know what n is. We do know what a1 is, but we also don't know what a sub n is, so we have two unknowns which means we're going to have to mix things up.
We know the general term, so we can plug the general term in for a sub n to make sure that this equation doesn't depend a sub n, it instead depends on the difference.
So easy substitution, a sub is equal to n over 2, 2a1 plus n minus 1 times d. So same formula just a different way of writing it. Now let's plug in the information that we know. We want the sum to be 572, so that's our sum plug that in, 572, is equal to n over 2, n is the number of terms that's what we're looking for, so that's going to stay as n, 2 times a1, a1 is the first term which is 5, 2 times 5 is going to be 10 plus n minus 1 times d, our difference which is just going to be 2.
So we now have an equation which we need to solve for n. So let's take a look at this. I'm going to actually go ahead and distribute this n over 2 in because both terms it has to go to have a factor of 2, so we're going cancel things out to make our numbers a little smaller. So what we have then is 572 is equal to, this goes in leaving us with 5n and then plus here our 2s cancel, so we're left with n times n minus 1. Distributing this out 572 is equal to 5n plus n² minus n.
Combine like terms bring everything to one side we actually have a quadratic here what we wend up with is 0 is equals to n², 5n minus n this is just going to become plus 4n minus 572.
This one is a little bit harder to factor, 572 is a pretty big number, we could do the quadratic formula, but I'll just tell you right now that 572 is 22 times 26 which has a difference of 4 so what we end up with is n, n 122, oops, and the other is 26. We want to end up with a positive term, so our 26 is bigger meaning our 22 is negative, so that leaves us with n is equal to either 26 or 22.
Thinking about what we're solving for n is the number of terms in this series, so we have a negative number and a positive number. It doesn't make any sense that we have a negative number of terms not really, so we can dismiss that as our answer and leaving us with 22 terms in this series to add up to the sum that they wanted.
So just another application of using our arithmetic series equation in this case adding up a bunch of number in order to equal a set sum, how many terms are involved.
Please enter your name.
Are you sure you want to delete this comment?
Carl Horowitz
B.S. in Mathematics University of Michigan
He knows how to make difficult math concepts easy for everyone to understand. He speaks at a steady pace and his stepbystep explanations are easy to follow.
i love you you are the best, ive spent 3 hours trying to understand probability and this is making sense now finally”
BRIGHTSTORM IS A REVOLUTION !!!”
because of you i ve got a 100/100 in my test thanks”
Concept (1)
Sample Problems (12)
Need help with a problem?
Watch expert teachers solve similar problems.

Arithmetic Series
Problem 1 7,815 viewsFind S_{40}
3 + 7 + 11 + 15 + ... 
Arithmetic Series
Problem 2 6,409 views3 + 3 + 0 + ... 30 2 
Arithmetic Series
Problem 3 6,128 views_{20} ∑(1 − 2i) ^{i = 0} 
Arithmetic Series
Problem 4 5,673 viewsHow many terms in 5 + 7 + 9 + ... must be added to make 572.

Arithmetic Series
Problem 5 864 views 
Arithmetic Series
Problem 6 916 views 
Arithmetic Series
Problem 8 1,050 views 
Arithmetic Series
Problem 9 812 views 
Arithmetic Series
Problem 10 800 views 
Arithmetic Series
Problem 11 897 views 
Arithmetic Series
Problem 12 764 views 
Arithmetic Series
Problem 13 877 views
Comments (0)
Please Sign in or Sign up to add your comment.
·
Delete