##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- Attend and watch FREE live webinar on useful topics

# Graphing Polynomial Functions - Problem 1

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

Let's graph a simple polynomial function. I want to graph f of x equals -x times x minus 1 times x plus 3. Now when you have the polynomial factored like this, you can tell what the units are going to be right? Because you're going to see the zeros 0, 1 and -3 and we're going to actually plot those now.

So we've got 0, 1 and -3 and the next thing I want to do is determine the end behavior and the end behavior as you recall comes from the leading term of the polynomial. So you have to multiply it out just enough to know what the leading term is. You have -x times x times x, the end behavior terms will be -x³ and the graph of -x³ looks like this, the left hand will go up and the right end will go up so that's important to know. Just keep in mind when we graph, the left end is going to go up the right end will go down.

Now usually what I like to do is plot just a couple of points in between the intercepts just to get an idea of the shape. So that's x and y, now let's plot we have -3 here, why don't we don't we do -2. And our function will have the opposite of -2, 2 times -2 minus 1, -3 -2 plus 3, 1. This is -6, so we get -2, -6 and our scale of our y axis is different, where I'll make this -6 and then that gives us the point -2, -6.

Let's plot -1 just to get an idea. I have a feeling this is going to curve, I just want to know how far down it goes, -1 opposite of -1 is 1, -1 minus 1, -2, -1 plus 3, 2 and we get -4 so -1, -4 is another point that we have to plot and I'll go right here and I think that's probably good enough let's draw our curve.

Remember the left end goes up, so we're going to come in like this and we have to pass through our intercepted 0, 0 and then go pass it and down like that, something like that. All right and that's a good enough graph. Make sure that you've got your intercepts clearly marked, I'll put a 1 here -3 and that's a pretty good graph of my cubic.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

###### Get Peer Support on User Forum

Peer helping is a great way to learn. Join your peers to ask & answer questions and share ideas.

##### Concept (1)

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete