### Learn math, science, English SAT & ACT from

high-quaility study
videos by expert teachers

##### Thank you for watching the preview.

To unlock all 5,300 videos, start your free trial.

# The Distance Formula in Polar Coordinates - Concept

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

In order to calculate the distance from two points in polar coordinates, we use the polar coordinates distance formula. In order to derive the **polar coordinates distance formula**, we use the law of cosines. We can also use the polar coordinates distance formula to help us come up with the polar equation for a circle centered at the origin.

I want to derive the distance formula in polar coordinates and to do this I'm going to need to recall the law of cosines. If you have a triangle, it's not necessarily a right triangle and you know three, two sides and the angle between them, you can find the third side using this formula, c squared equals a squared plus b squared minus 2ab cosine theta. And again a and b are the 2 known sides, theta's the angle between them.

Alright. Let's look at our picture here. I've graphed 2 points in polar coordinates. One is r1 theta 1, the other's r2 theta 2. I want to fi nd the distance between these points. Now in order to do this I need the length of these 2 sides and I need this angle. Now r2 theta 2 is r2 away from the origin, so that gives me this length as r2. And r1 theta 1 is r1 away from the origin. Theta 2 represents the angle that this point makes with the positive x axis and theta 1 is the angle this would make with the positive x axis. So this angle between them is going to be theta 2 minus theta 1.

So I have 2 sides and the angle between them and I'm ready to use the law of cosines to derive the distance formula. So the distance formula looks like this. d squared equals r1 squared plus r2 squared minus twice the product r1 and r2. 2 r1 r2 times the cosine of the angle between them which is theta 2 minus theta 1. That's it, that's the distance formula. Now obviously you'll take the square root over the result but it's basically in the form of the law of cosines and we'll use this to find the distance between 2 points in polar coordinates.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete