### Learn math, science, English SAT & ACT from

high-quaility study
videos by expert teachers

##### Thank you for watching the preview.

To unlock all 5,300 videos, start your free trial.

# Lines in Polar Coordinates - Problem 1

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

We're talking about lines and polar coordinates. Remember, this is the equation for our line and polar coordinates. R equals d over cosine theta minus beta where d, beta, are the polar coordinates of the point on the line closest to the origin. So let's do some examples.

Here, I've got a vertical line that passes through 3,pi. According to the the formula, the equation for this would be r equals, and d, this is the closest point to the origin. The distance, d would be 3, and the cosine of theta minus beta. Beta is the angle of this point, so it would be pi and that's your equation.

Of course another way to get the equation for line, is to make the observation that its equation in rectangular is x equals -3. So you can use the conversion; r cosine theta equals -3. R equals -3 secant theta, so that's another equation for the same line.

Here, we can use the equation r equals d over cosine theta minus beta. The close point here d, beta, is this point. This is the closest point to the origin. D is 8, beta is pi over 2. So we get r equals 8 over the cosine of theta minus pi over 2. So that's one equation. But if you recognize that this is y equals 8, then you can use the conversion y is r sine theta. So r sine theta equals 8, r equals 8 cosecant theta. These are equivalent equation.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

##### Concept (1)

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete