##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- Attend and watch FREE live webinar on useful topics

# Converting from Polar Coordinates to Rectangular - Problem 3

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

I’m converting polar equations to rectangular. I have the equation r equals 2 over cosine theta minus pi over 6. I want to convert this to rectangular and then identify the resulting shape.

First thing I want to do is multiply the cosine out of the denominator. So let me do that. I get r cosine theta minus pi over 6, equals 2. Now I really would like an r cosine theta or something like that on this left side, but I’ve got theta minus pi over 6. How can I deal with that? Well there is a way. We can use the cosine of the different formula to break that cosine of theta minus pi over 6 apart. So let’s use that.

I get r times, then I’ll use some brackets here. Cosine theta, cosine pi over 6 plus, remember the cosine of a difference has a plus in it, sine theta, sine pi over 6. All that equals 2. So I have an r cosine theta when I distribute. Times and the cosine of pi over 6 root 3 over 2 plus.

R times sine theta, times the sine of pi over 6 which is 1/2, and all that equals 2. Let me multiply through by 2. I get root 3 r cosine theta plus r sine theta equals 4. And now I’m going to convert. R cosine theta is x, root 3 times x plus r sine theta is y, equals 4.

So let me just move this term over the left side, y equals negative root 3x plus 4. This is a line; the slope negative root 3 and y intercept 0,4. So this equation, the strange looking equation is actually the equation of a line.

Don’t be afraid to use the cosine of a difference formula any identity that you have from the past, when you are converting from polar to rectangular.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete