##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- Attend and watch FREE live webinar on useful topics

# Solving "Less Than" Absolute Value Inequalities - Problem 2

###### Carl Horowitz

###### Carl Horowitz

**University of Michigan**

Runs his own tutoring company

Carl taught upper-level math in several schools and currently runs his own tutoring company. He bets that no one can beat his love for intensive outdoor activities!

Solving an absolute value inequality where we have a lot more going on. First thing we always want to do, when we are solving any sort of equation, or any inequality like this, is to get whatever the main pieces by itself. So in this case we are dealing with an absolute value. First thing we want to do is get that by itself.

So first, add over 9, the 3 and the absolute values stay the same, and we get less than 24. Divide by 3, 2x plus 4 is less than 8. So we now have an absolute value less than a number. And here we need to make two different equations. First being 2x plus 4 is less than 8, that’s the easy one, and we also need to remember our other equation which is the inside the absolute value stays the same. Now we need to make sure we flip the sign, and take the opposite of the number itself.

And whenever we are dealing with the absolute value less than, this becomes an end statement, this becomes an intersection. Once we have this, it’s like solving any other intersection of two inequalities. Solve for x independently on each. So for this one subtract 4 over, 2x is less than 4, divide by 2. X is less than 2. Same thing over here, subtract 4 over, divide by 2, x is greater than 6. -6 I think I did something wrong didn’t I? Yes negatives just don’t disappear so this is a -6. We are still dealing with the intersection. Draw a number line to see where these two things over lap.

We have a 2, x is less than 2, not equal to, so we are going to have a open circle shading down. x is greater than -6. -6 not included so open circle shading up. And we are looking for the intersection, we are looking for both of these our present. And either end we just have 1 and the middle is where they overlap. So our answer then is from (-6 2) because we are not including those two endpoints.

So to solve this out; first thing we did was isolate our absolute value, made our two equations. We knew that it was intersection because it is a less than statement.

Please enter your name.

Are you sure you want to delete this comment?

###### Carl Horowitz

B.S. in Mathematics University of Michigan

He knows how to make difficult math concepts easy for everyone to understand. He speaks at a steady pace and his step-by-step explanations are easy to follow.

i love you you are the best, ive spent 3 hours trying to understand probability and this is making sense now finally”

BRIGHTSTORM IS A REVOLUTION !!!”

because of you i ve got a 100/100 in my test thanks”

##### Sample Problems (2)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete