Learn math, science, English SAT & ACT from
highquaility study
videos by expert teachers
Thank you for watching the preview.
To unlock all 5,300 videos, start your free trial.
The Ellipse  Problem 2
Carl Horowitz
Carl Horowitz
University of Michigan
Runs his own tutoring company
Carl taught upperlevel math in several schools and currently runs his own tutoring company. He bets that no one can beat his love for intensive outdoor activities!
Graphing a ellipse that has been transformed, so graphing ellipse that has been moved. So basically how we find this center of an ellipse that's been moved is the exact same way as we find the center of a circle, so we basically look at each term and see what you have to plug into it to make it 0.
So looking here x plus 2 that tells us that our center is shifted back 2 units, y minus 3 that tells us that our y it's value of it has been shifted up 3, so what that tells me is my center is back to up 3 and our center is going to be right around in here.
Now looking at what we know is that the term underneath the x coordinate relates to the x radius and the term underneath the y relates to the y radius. In this case the x term is smaller, so I know this is going to be the minor axis, the y term is bigger, I know that's going to be the major axis.
So what this tells me 4 is 2², so I know that the half of the minor axis, the x radius is going to be 2, so what I can do is go 2 units in either direction from the center and that will tell me where my widest point is. So I start at 2, I go over to 0 and I go back over 2, 4 and that's going to be where my widest portion is.
The 25 tells me that my y radius, half my major axis is going to be 5, 5² is 25 so then we go from 3 up until 8 three, four, five, six, seven, eight and we also go from 3 down 5 so we go down to 2 we then have our general points and we try our best to connect them to make an ellipse. I'm a horrible drawer, it's going to be funny but let's see what we can do. It's probably going to be more pointed than it should be, yeah it's pretty awful but hopefully you get the idea of what is going on.
So the last thing we're asked in this problem is the foci and the main thing for the foci is to remember the relationship between the major axis, the minor axis and the distance between the distance between the center and the focus. And that is going to be a² minus b² is going to equal to c² where a is the major radius, b is the minor radius and c is the distance from the center to the focus. Major, minor radius is horrible terminology but hopefully you know what I mean.
So a² is the major radius squared, that's going to relate to our larger term, so in this case it's just going to be 25. B² refers to our minor radius, our smaller radius squared which is just going to be 4 and this is going to equal c², leaving us with 21 is equal to c², c is equal to square root of 21 plus or minus.
So what that tells me is that our foci is always on our major axis and our major axis for this problem is vertical. So I know that my x coordinate or my foci is always going to be 2. So I have two foci, they both have an x coordinate of 2 and my y coordinate is going to be up 3, 21 from the center and also down root 21 from the center. So for the up I just take 3 plus root 21 and for the down I subtracted end up with 3 minus root 21.
So what we end up with is probably a point somewhere in here and probably a point somewhere in here. Those points are completely off, but you hopefully see that they will be on this major axis up a bit from the center and down a bit from the center.
So graphing a ellipse that's been transformed basically find the center as you would any circle, and then just take into consideration what you know about the major, minor axis and lastly to find your foci, just use your relationship a² minus b² equals c² and move a set distance down the major axis from the center to find where those foci lay.
Please enter your name.
Are you sure you want to delete this comment?
Carl Horowitz
B.S. in Mathematics University of Michigan
He knows how to make difficult math concepts easy for everyone to understand. He speaks at a steady pace and his stepbystep explanations are easy to follow.
Concept (1)
Sample Problems (20)
Need help with a problem?
Watch expert teachers solve similar problems.

The Ellipse
Problem 1 11,966 viewsGive an equation for an ellipse centered at the origin 10 units wide and 6 units tall?
Foci? 
The Ellipse
Problem 2 9,267 views(x + 2)² + (y − 3)² = 1 4 25 a) Graphb) foci 
The Ellipse
Problem 3 8,409 viewsFind the equation for an ellipse with foci (±6,0) and covertices at (0,±8).

The Ellipse
Problem 4 7,764 viewsGiven 4x² + y² + 24x − 4y + 36 = 0.
Find the center and length of the major and minor axis. 
The Ellipse
Problem 5 1,800 views 
The Ellipse
Problem 6 1,516 views 
The Ellipse
Problem 7 1,594 views 
The Ellipse
Problem 8 1,686 views 
The Ellipse
Problem 9 1,506 views 
The Ellipse
Problem 10 1,571 views 
The Ellipse
Problem 11 1,418 views 
The Ellipse
Problem 12 1,448 views 
The Ellipse
Problem 13 1,522 views 
The Ellipse
Problem 14 1,520 views 
The Ellipse
Problem 15 1,627 views 
The Ellipse
Problem 16 1,597 views 
The Ellipse
Problem 17 1,533 views 
The Ellipse
Problem 18 1,739 views 
The Ellipse
Problem 19 1,624 views 
The Ellipse
Problem 20 1,625 views
Comments (1)
Please Sign in or Sign up to add your comment.
·
Delete
Yuya Ra · 2 months, 2 weeks ago
Mr Horowitz, just wanna correct the last answer for foci, the answer should be (2, 3 +/ /21), the x coordinates is 2