##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- FREE study tips and eBooks on various topics

# The Sine Addition Formulas - Concept

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

Starting with the cofunction identities, the **sine addition formula** is derived by applying the cosine difference formula. There are two main differences from the cosine formula: (1) the sine addition formula adds both terms, where the cosine addition formula subtracts and the subtraction formula adds; and (2) the sine formulas have sin-sin and cos-cos. Both formulas find values for angles.

I want to develop a formula for the sine of the sum of the of two angles. In order to do that I'm going to need to recall two identities, the cofunction identities.

Remember the cosine of pi over 2 minus theta equals sine of theta and the sine of pi over 2 minus theta equals cosine theta. Remember that sine and cosine are cofunctions of one another and in order to transform one into the other all you have to do is replace theta by pi over 2 minus theta and pi over 2 minus theta is the compliment of theta so you're just replacing theta with its compliment. Anyway we're going to use those two identities on our proof and we're also going to use the cosine of a difference formula, so what's the sine of a sum? This is the kind of thing we're looking for the sine of alpha plus beta so first thing we do is use a cofunction identity to rewrite this, cosine and back over here again here my theta is going to be alpha plus beta I'm going to get cosine of pi over 2 minus alpha plus beta, so pi over 2 minus alpha plus beta and I'll just distribute the minus sign over the alpha and beta and I get cosine pi over 2 minus alpha minus beta and here you see that we actually have the the cosine of a difference. We've got pi over 2 minus alpha minus beta so we can use our formula for cosine of a difference and remember it's cosine cosine, sine sine, so it's cosine pi over 2 minus alpha cosine beta sine pi over 2 minus alpha sine beta and remember with cosine the minus becomes plus.

Now we have two more situations where we have to use the cofunction identities. Cosine of pi over 2 minus alpha is sine alpha and sine of pi over 2 minus alpha is cosine alpha so sine alpha times cosine beta plus cosine alpha times sine beta and that's it, that's the sine of alpha plus beta.

This is the sine of a sum identity.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

##### Concept (1)

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete