### Learn math, science, English SAT & ACT from

high-quaility study
videos by expert teachers

##### Thank you for watching the preview.

To unlock all 5,300 videos, start your free trial.

# Postulate, Axiom, Conjecture - Concept

###### Brian McCall

###### Brian McCall

**Univ. of Wisconsin**

J.D. Univ. of Wisconsin Law school

Brian was a geometry teacher through the Teach for America program and started the geometry program at his school

Three words that are used seemingly interchangeably in Geometry are **postulate**, axiom, and conjecture. It is important, however, to know how each word is different and to know the subtle implications of using each word. These terms are especially important when working with Geometry proofs.

Now that you're in geometry we are going to use three words that you probably didn't use in Algebra. They are postulate, axiom, and conjecture. And they get confusing when to use one and not the other. While, postulate or an axiom is an accepted statement of fact, there is nothing that you can prove wrong about it, a conjecture is a conclusion derived from inductive reasoning. Well inductive reasoning, if I draw a line under that, is the process of observing patterns and making generalizations so not everyone is going to be true.

Well, what is an example of a postulate or an axiom? If you look over here, a postulate of an axiom could say through any two points there exists only one line. Well, if I think about two points somewhere there is only one possible line that will go through both of those points. So there's an accepted statement of fact here that I cannot prove incorrect.

What about a conjecture? Remember; conjecture we said was a conclusion derived from inductive reasoning.

LetÂ’s say one day you're bored during class and you realized that one squared was equal to one so the original number is equal to two the square number. Two squared is equal to four, three squared is equal to nine, so you make the conjecture that the square of any number is larger or equal to the original number. Well that would be a conjecture because you're noticing this pattern and you're making a statement based on that.

Well I am going to say, what about one half? If you square one half you're going to get one fourth and one fourth is not larger than one half.

So a conjecture is not always true and it's based on inductive reasoning. A postulate or an axiom is an accepted statement of fact where you'll not be able to find any counter example.

Please enter your name.

Are you sure you want to delete this comment?

###### Brian McCall

B.S. in Chemical Engineering, University of Wisconsin

J.D. University of Wisconsin Law School (magna cum laude)

He doesn't beat around the bush. His straightforward teaching style is effective and his subtle midwestern accent is engaging. There's never a dull moment with him.

##### Concept (1)

#### Related Topics

- Using a Protractor 23,612 views
- Angle Bisectors 20,389 views
- Supplementary and Complementary Angles 29,922 views
- Polygons 19,127 views
- Types of Triangles 24,873 views
- Perimeter 12,501 views
- Parts of a Circle 16,373 views
- Three Undefined Terms: Point, Line, and Plane 82,502 views
- Counterexample 30,510 views
- Writing a Good Definition 22,198 views
- Converse 16,764 views
- Line Segments 38,991 views
- Rays 29,823 views
- Parallel and Skew Lines 35,927 views
- Midpoints and Congruent Segments 29,942 views
- Parallel Planes and Lines 26,928 views
- Vertex and Diagonals 18,829 views
- Calculating the Midpoint 23,089 views
- Angles: Types and Labeling 27,716 views

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete