##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- Attend and watch FREE live webinar on useful topics

# Postulate, Axiom, Conjecture - Concept

FREE###### Brian McCall

###### Brian McCall

**Univ. of Wisconsin**

J.D. Univ. of Wisconsin Law school

Brian was a geometry teacher through the Teach for America program and started the geometry program at his school

Three words that are used seemingly interchangeably in Geometry are **postulate**, axiom, and conjecture. It is important, however, to know how each word is different and to know the subtle implications of using each word. These terms are especially important when working with Geometry proofs.

Now that you're in geometry we are going to use three words that you probably didn't use in Algebra. They are postulate, axiom, and conjecture. And they get confusing when to use one and not the other. While, postulate or an axiom is an accepted statement of fact, there is nothing that you can prove wrong about it, a conjecture is a conclusion derived from inductive reasoning. Well inductive reasoning, if I draw a line under that, is the process of observing patterns and making generalizations so not everyone is going to be true.

Well, what is an example of a postulate or an axiom? If you look over here, a postulate of an axiom could say through any two points there exists only one line. Well, if I think about two points somewhere there is only one possible line that will go through both of those points. So there's an accepted statement of fact here that I cannot prove incorrect.

What about a conjecture? Remember; conjecture we said was a conclusion derived from inductive reasoning.

LetÂ’s say one day you're bored during class and you realized that one squared was equal to one so the original number is equal to two the square number. Two squared is equal to four, three squared is equal to nine, so you make the conjecture that the square of any number is larger or equal to the original number. Well that would be a conjecture because you're noticing this pattern and you're making a statement based on that.

Well I am going to say, what about one half? If you square one half you're going to get one fourth and one fourth is not larger than one half.

So a conjecture is not always true and it's based on inductive reasoning. A postulate or an axiom is an accepted statement of fact where you'll not be able to find any counter example.

Please enter your name.

Are you sure you want to delete this comment?

###### Brian McCall

B.S. in Chemical Engineering, University of Wisconsin

J.D. University of Wisconsin Law School (magna cum laude)

He doesn't beat around the bush. His straightforward teaching style is effective and his subtle midwestern accent is engaging. There's never a dull moment with him.

so my teacher can't explain this in 5 weeks but I learn this in less than 3 minutes”

its hard to focus when the teacher is really really really goodlooking”

i like how it took you 3 minutes and 8 seconds to accomplish what my teacher couldn't in 3 days”

##### Concept (1)

#### Related Topics

- Using a Protractor 21,649 views
- Angle Bisectors 17,956 views
- Supplementary and Complementary Angles 26,372 views
- Polygons 17,574 views
- Types of Triangles 21,476 views
- Perimeter 11,701 views
- Parts of a Circle 14,869 views
- Three Undefined Terms: Point, Line, and Plane 67,196 views
- Counterexample 27,921 views
- Writing a Good Definition 18,105 views
- Converse 15,414 views
- Line Segments 35,055 views
- Rays 25,710 views
- Parallel and Skew Lines 32,349 views
- Midpoints and Congruent Segments 26,059 views
- Parallel Planes and Lines 23,851 views
- Vertex and Diagonals 16,614 views
- Calculating the Midpoint 21,316 views
- Angles: Types and Labeling 25,183 views

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete