##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- Attend and watch FREE live webinar on useful topics

# Counterexample - Concept

FREE###### Brian McCall

###### Brian McCall

**Univ. of Wisconsin**

J.D. Univ. of Wisconsin Law school

Brian was a geometry teacher through the Teach for America program and started the geometry program at his school

Throughout Geometry, students write definitions and test conjectures using counterexamples. When writing definitions, counterexamples are useful because they ensure a complete and unique description of a term. If a **counterexample** does not exist for a conjecture (an if - then statement), then the conjecture is true.

A key term in geometry is counterexample. the way we define counterexample is an example that makes a definition or conjecture incorrect. The reason why this is important is because if you can find a counterexample for a definition, let's say a teacher asks you to write the definition of a rectangle. If you can find a counterexample to your definition you don't have a good definition. You need to be more specific.

So let's look at a couple of examples and see if we can find a counterexample. The opposite of any number is smaller than the original number. So I guess we could say pick an original number, which I'm going to abbreviate ON. And then we'll have the opposite. So I'm going to write OPP.

So let's say our original number was 2. The opposite of 2 is negative 2. In which case the original number is larger than the opposite number, or the way of stating it here is the opposite is smaller than the original.

But is this always true? If I picked an original number that was negative. Let's say negative 1. The opposite of negative 1 is positive 1. So I'm going to say that the opposite is 1. In which case the opposite is not smaller than the original. It is larger.

So a counter example to the statement could be negative 1. But any negative number will make this statement not true.

Another statement is if a molecule is H20 then it is a liquid. We know that's not true because water could come in two other forms. It could come in ice, which is the solid form. Or it could come in as vapor or steam. So this is your gaseous form. So depending on temperature and pressure, water could also be ice or vapor. So both of these are statements or examples that make this statement incorrect.

Let's look at one more. In this statement we're talking about multiples of a number. If every multiple of 20 is divisible by 4. So I guess we could think about well multiplies of 20, we could say 20, 40, 60, 80 and so on. Those three dots mean and so on. Well, 20 is divisible by 4. 40 is divisible by 4. 60 is divisible by 4. You'd get 15 if you divided by 4 and 80 is divisible by 4.

The reason they're all divisible by 4 is because if we look at 20, if I break it down into its factors, I could write 20 as 4 times 5. So if I multiply 20 by 2, then notice I'm going to have 4 as a factor. If I multiply 20 by 3, then I'm still going to have this 4 as a factor.

No matter what I multiply 20 by, this 4 will be here which means it will be divisible by 4. There is no counter example that will make this statement false, which means this statement is always true.

So the key to a good counter, to a good definition or a conjecture is to make sure you cannot find a counterexample that makes it false.

Please enter your name.

Are you sure you want to delete this comment?

###### Brian McCall

B.S. in Chemical Engineering, University of Wisconsin

J.D. University of Wisconsin Law School (magna cum laude)

He doesn't beat around the bush. His straightforward teaching style is effective and his subtle midwestern accent is engaging. There's never a dull moment with him.

so my teacher can't explain this in 5 weeks but I learn this in less than 3 minutes”

its hard to focus when the teacher is really really really goodlooking”

i like how it took you 3 minutes and 8 seconds to accomplish what my teacher couldn't in 3 days”

###### Get Peer Support on User Forum

Peer helping is a great way to learn. Join your peers to ask & answer questions and share ideas.

##### Concept (1)

#### Related Topics

- Using a Protractor 20,008 views
- Angle Bisectors 16,935 views
- Supplementary and Complementary Angles 24,273 views
- Polygons 16,522 views
- Types of Triangles 19,452 views
- Perimeter 11,289 views
- Parts of a Circle 13,941 views
- Three Undefined Terms: Point, Line, and Plane 62,905 views
- Writing a Good Definition 17,055 views
- Postulate, Axiom, Conjecture 19,138 views
- Converse 14,726 views
- Line Segments 33,033 views
- Rays 23,610 views
- Parallel and Skew Lines 30,559 views
- Midpoints and Congruent Segments 24,601 views
- Parallel Planes and Lines 22,719 views
- Vertex and Diagonals 15,180 views
- Calculating the Midpoint 20,388 views
- Angles: Types and Labeling 23,379 views

## Comments (1)

Please Sign in or Sign up to add your comment.

## ·

Delete

## Darey · 7 months, 2 weeks ago

is there a book you based on for this course? And what's ISBN#?