##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- FREE study tips and eBooks on various topics

# Tangent Segments to a Circle - Problem 3

###### Brian McCall

###### Brian McCall

**Univ. of Wisconsin**

J.D. Univ. of Wisconsin Law school

Brian was a geometry teacher through the Teach for America program and started the geometry program at his school

To find the measure of an arc between two points of tangency, first recall that the measure of an arc is the same as the measure of the central angle whose legs intersect the circle at the points where the arc begins and ends. Also recall that the tangent lines drawn from a point outside the circle form two congruent segments. In addition, a radius intersects a point of tangency at a right angle. As a result, a quadrilateral is formed with the two tangent lines and radii. Since the measure of the angle formed by the tangent lines is known, and the the two right angles formed by the radii and tangent lines are known, the missing angle is the measure of the central angle. To solve for this central angle, subtract the known angles from 360°, since the sum of the angles in a quadrilateral is always 360°. Since this central angle is the same as the measure of the arc, you have found the measure of the intercepted arc formed by the two tangent lines.

Transcript Coming Soon!

Please enter your name.

Are you sure you want to delete this comment?

###### Brian McCall

B.S. in Chemical Engineering, University of Wisconsin

J.D. University of Wisconsin Law School (magna cum laude)

He doesn't beat around the bush. His straightforward teaching style is effective and his subtle midwestern accent is engaging. There's never a dull moment with him.

so my teacher can't explain this in 5 weeks but I learn this in less than 3 minutes”

its hard to focus when the teacher is really really really goodlooking”

i like how it took you 3 minutes and 8 seconds to accomplish what my teacher couldn't in 3 days”

##### Concept (1)

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete