##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- Attend and watch FREE live webinar on useful topics

# Radii to Tangents - Problem 3

###### Brian McCall

###### Brian McCall

**Univ. of Wisconsin**

J.D. Univ. of Wisconsin Law school

Brian was a geometry teacher through the Teach for America program and started the geometry program at his school

Given a ray tangent to a point on a circle and the radius of that circle, it is possible to find the length of a segment drawn from the center of the circle to a point outside that circle. Since the ray is tangent to the circle, it is possible to draw a radius that intersects the ray at a right angle. Then, the radius, ray, and segment form a right triangle. Using their side lengths, it is possible to find the length of the segment, which is the hypotenuse of this right triangle.

Recall that by the **Pythagorean Theorem**, a^{2} + b^{2} = c^{2}, where a and b are the lengths of the legs of the right triangle, and c is the length of the hypotenuse. Remember that the **hypotenuse** is the longest side of a right triangle, and is opposite the right angle. So, simply plug in the lengths of the radius and ray for a and b, then solve for c.

In this problem we’re asked to find this line segment CB. But what are we given?

Well I see that we have a ray CA that’s tangent at point A. I also see that we have a radius BA that’s of length 8. How in the world am I going to find out what this length CB is? Well, one way is to notice that we have a radius to a point of tangency and we know that a radius to a point of tangency always forms a right angle. So let’s go back and label angle A as a right angle.

Now I see that we have a special right triangle, is one of our Pythagorean triples. 8, 15, 17, if CB is 17 then the Pythagorean Theorem is true because 8² plus 15² equals 17².

So to find CB we said, a radius to a point of tangency is a right angle and 8, 15, 17 is one of our Pythagorean triples.

Please enter your name.

Are you sure you want to delete this comment?

###### Brian McCall

B.S. in Chemical Engineering, University of Wisconsin

J.D. University of Wisconsin Law School (magna cum laude)

He doesn't beat around the bush. His straightforward teaching style is effective and his subtle midwestern accent is engaging. There's never a dull moment with him.

so my teacher can't explain this in 5 weeks but I learn this in less than 3 minutes”

its hard to focus when the teacher is really really really goodlooking”

i like how it took you 3 minutes and 8 seconds to accomplish what my teacher couldn't in 3 days”

##### Concept (1)

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete