##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- FREE study tips and eBooks on various topics

# The Fundamental Theorem of Calculus - Concept

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

The fundamental theorem of Calculus is an important theorem relating antiderivatives and definite integrals in Calculus. **The fundamental theorem of Calculus** states that if a function f has an antiderivative F, then the definite integral of f from a to b is equal to F(b)-F(a). This theorem is useful for finding the net change, area, or average value of a function over a region.

I need to introduce a very important topic, "The Fundamental Theorem of Calculus." Here's the theorem right here. If f is a continuous function and capital F is an anti-derivative of little f then the definite integral from a to b of little f of x dx is capital F of b minus capital F of a. So again capital F is an anti-derivative of this inside function. This b is the same as this b, this a is the same as this a. So you can evaluate a definite integral exactly using an anti-derivative and just evaluating it and subtracting.

So let's see how that works out in an example. Says find the exact area under y=x squared plus 1 from x=0 to x=2. So the exact area equals the definite integral of this function from 0 to 2. That would be the integral from 0 to 2 of x squared plus 1 dx. So this is the integral I'm going to solve. Let's take it up here.

In this integral from 0 to 2, this is my little f of x. I need an anti-derivative for it and an anti-derivative would be capital f of x equals one third x cubed plus x. Now it's also true that one third x cubed plus x plus 1 is an anti-derivative of x squared plus 1. You can use any anti-derivative, it doesn't matter and that's why most people will choose to use the anti-derivative with a +0 here. So I need to evaluate this anti-derivative at 2 and then evaluate it at 0 and subtract. So this is going to equal capital f of 2 minus capital f of 0. Now capital f of 2 is one third of 2 cubed, one third of 2 cubed plus 2 minus capital f of 0 one third of 0 cubed plus 0. This is just going to be 0. One third of 2 cubed, 8 thirds plus 2-0. So this is going to be our be our answer. 2 is 6 thirds so this is 14 thirds or about 4 and 2 thirds. This is the exact value for the area under that curve and we got it using just a couple of calculations, the anti-derivative evaluated at 2 minus the anti-derivative evaluated at 0.

Now here's some helpful notation. When you're using the fundamental theorem of Calculus, you often want a place to put the anti-derivatives. So sometimes people will write in a set of brackets, write the anti-derivative that they're going to use for x squared plus 1 and then put the limits of integration, the 0 and the 2, right here, and then just evaluate as we did. So you'll see me using that notation in upcoming lessons.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

##### Concept (1)

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete