##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- FREE study tips and eBooks on various topics

# Chain Rule: The General Logarithm Rule - Problem 3

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

You can use the chain rule to find the derivative of a composite function involving natural logs, as well. Recall that the derivative of ln(x) is 1/x. For example, say f(x)=ln(g(x)), where g(x) is some other function of x. By the chain rule, take the derivative of the "outside" function and multiply it by the derivative of the "inside" function. With the derivative of logarithmic functions, the outside function is the logarithm itself, and the inside function is what is inside the logarithm. So, f'(x)=1/g(x) * g'(x).

I have another example. We’re going to differentiate a function of this form, natural log of g(x). And turns out that in this example, we’ll be able to use another property of natural logs. This property; the log of a product A times B equals the log of A plus the log of B.

Let’s take a look at the example. We’re asked differentiate h(x) equals natural log of this product. 0.5x plus 1 times 1 plus x². This natural log can be expanded into ln of the first thing. 0.5x plus 1 plus ln of the second, using that product I just mentioned. And differentiating this piece by piece is going to be a lot easier than differentiating the whole thing at once.

Let’s do that. H'(x) is going to be, and according to our general logarithmic rule, it's 1 over the inside part. 1 over 0.5x times the derivative of 0.5x plus 1 and that’s 0.5 plus. And now the derivative of this term is 1 over 1 plus x squared times the derivative of 1 plus x² which is 2x. And so we get 0.5 over 0.5x plus 1 plus 2x over 1 plus x². Doing this derivative was a lot easier using the property of logarithms to help us out.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete