##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- Attend and watch FREE live webinar on useful topics

# Chain Rule: The General Exponential Rule - Concept

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

The exponential rule is a special case of the chain rule. It is useful when finding the derivative of e raised to the power of a function. The **exponential rule** states that this derivative is e to the power of the function times the derivative of the function.

I want to talk about a special case of the chain rule where the function that we're differentiating has its outside function e to the x so in the next few problems we're going to have functions of this type which I call general exponential functions. we'll have e to the x as our outside function and some other function g of x as the inside function.

And I'll have a special version of the chain rule that I'll use for these and I'll call this rule the general exponential rule. So the derivative of e to the g of x is e to the g of x times g prime of x. And this is because the derivative of e to the x if you'll recall derivative of e to the x is just e to the x. Okay let's try this out on h of x equals e to the x squared plus 3x+1 and let's observe that again the outside function is e to the x and the inside function is this polynomial x squared plus 3x+1 and so the derivative according to this formula is the same function e to the g of x right so e to the x squared plus 3x+1 times g prime of x and that's the derivative of the inside function.

And that derivative is 2x+3 and that's it, these are super easy to differentiate so every time you a function of the form e to the g of x it's derivative is e to the g of x times the derivative of the inside function.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete