##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- Attend and watch FREE live webinar on useful topics

# Evaluating Limits Algebraically, Part 1 - Problem 2

FREE###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

To find the limit of a rational function as x approaches a point, first determine where the function is continuous. If it is continuous at the point that x is approaching, then you can simply evaluate the function at that point because by the definition of continuity, the value of the function at a point should be the same as the limit of the function at that point.

Let's take a look at another example. I want to evaluate the limit as x approaches -5 of x over x plus 4 plus 3 over x plus 3. Now I want to see if I can use continuity on this limit. So I need to determine where this function is actually continuous.

Now this function is a combination of functions I know to be continuous. I've got little rational function here plus 3. So the sum of continuous functions. X plus 3 is a polynomial, and quotients of continuous functions are continuous. So this is going to be continuous wherever its defined.

Where is it defined? Well, it's not defined at -3, so I would have to say continuous except x equals -3. It's also not defined at -4. But -5 is okay, so I can use continuity to evaluate this limit. That means plugging -5 in for x.

So I get -5 over -5 plus 4, -1 plus 3 all over -5 plus 3. So 5 plus 3, that's 8 over -5 plus 3, -2. I get -4. Very easy to evaluate a limit using continuity.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

###### Get Peer Support on User Forum

Peer helping is a great way to learn. Join your peers to ask & answer questions and share ideas.

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete