##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- Attend and watch FREE live webinar on useful topics

# Evaluating Limits Algebraically, Part 1 - Problem 1

FREE###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

To evaluate the limit of a continuous function at a certain point, simply evaluate the function at that point. From the definition of continuity, we know that the limit of a function is the same as the value of the function at that point, so we can use this fact to find limits. This is often the easiest way to evaluate a limit, but it is important to check that the function is actually continuous at the point in question.

Let's evaluate another limit. I have the limit as x approaches 1 of x² minus 16 minus x² plus 4x. Now I want to try to use continuity wherever possible, because this is the easiest way to evaluate a limit.

Now using continuity means just plugging the number 1 into the function. You can only do that is the function is continuous at x equals 1. So let's figure out where this function is continuous.

It's a rational function. Rational functions are continuous everywhere that they're defined, but they're undefined when the denominator is 0. So this function is continuous except at x equals 0, and x equals -4.

0, and -4 are the two zeros of the denominator. So that's where this function will fail to be continuous. 1 isn't one of those numbers, so I can plug 1 in. I get 1² minus 16 over 1² plus 4 times 1. So that's 1 minus 16, -15 over 1 plus 4, 5, -3.

So using continuity is the easiest way to evaluate a limit. You always want to do it if you can. You won't always be able to do it, but you should always check. Just make sure that your function is actually continuous at the number in question.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

###### Get Peer Support on User Forum

Peer helping is a great way to learn. Join your peers to ask & answer questions and share ideas.

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete