##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- Attend and watch FREE live webinar on useful topics

# Continuous Functions - Problem 1

FREE###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

One property of continuous functions is that the addition of two continuous functions is also continuous. For example, if you know that f(x) and g(x) are continuous, then you know that f(x) + g(x) is continuous. Additionally, scalar multiples (multiplying by a constant) of continuous functions are also continuous. So, if f(x) is continuous, then c*f(x) is continuous. From this, you can see that all polynomials are continuous, meaning that they are continuous at all points that they are defined.

I'm going to do a problem that involves proving that a function is continuous. First let's take a look at a rule. If two functions f, and g are continuous functions, and c is a constant. Then two things; first f(x) plus g(x) will be a continuous function. The constant c times f(x) will also be continuous. So these functions will be continuous wherever they are defined.

Let's take a look at the problem. Explain why the polynomial p(x) equals 3x² minus x plus 10 is a continuous function. First of all, the function is x², x, and 10, these guys, those are power functions. Therefore they are continuous. So are continuous, because they are power functions.

Second, when you multiply a continuous function by a constant, it remains continuous. So 3 times x², and -1 times x are continuous functions. So 3 times x², and -x are continuous. Why would that be? This would be by property 2 here.

Finally, if you add these up, they're continuous by property 1. P(x) which equals 3x² minus x plus 10 is continuous by property 1. Sums, and it turns also differences of continuous functions are continuous. Now using an argument like this, you can actually show that any polynomial functions are continuous. That's my next result.

All polynomials are continuous. Remember continuous means that they're continuous wherever they're defined. Polynomial functions are always defined for all real numbers. So polynomials are always continuous for all real numbers. Here is one example.

Another example would be say q(x) equals 0.08x³ plus 12x. R(x) equals 4x to the 12th plus 8x² plus 100. All three of these are polynomial functions. Therefore, they're all continuous for all real numbers.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

###### Get Peer Support on User Forum

Peer helping is a great way to learn. Join your peers to ask & answer questions and share ideas.

##### Concept (1)

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete