### Learn math, science, English SAT & ACT from

high-quaility study
videos by expert teachers

##### Thank you for watching the preview.

To unlock all 5,300 videos, start your free trial.

# Continuity - Concept

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

In order for a function to be continuous at a certain point, three conditions must be met: (1) that the point is in the domain of the function, (2) that the two-sided limit of the function as it approaches the point does in fact exist and (3) the value of the function equals the limit that it approaches. The **continuity of a function** only exists if these three conditions are met.

I want to talk about a concept called "Continuity," let f of x be a function here is the definition of Continuity.

We say that f of x is continuous at the point x=a if three things are true. First f of a is defined so a has to be in the domain of the function f. Second the limit as x approaches a f of x exists, so the limit has to exist from both sides. And then three the limit as x approaches a of f of x has to equal f of a. So this value in part one has to equal the value in part two. These are the three conditions for Continuity of a function at a point x=a.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

##### Concept (1)

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete