##### Like what you saw?

##### Create FREE Account and:

- Watch all FREE content in 21 subjects(388 videos for 23 hours)
- FREE advice on how to get better grades at school from an expert
- Attend and watch FREE live webinar on useful topics

# Differential Equations - Problem 2

###### Norm Prokup

###### Norm Prokup

**Cornell University**

PhD. in Mathematics

Norm was 4th at the 2004 USA Weightlifting Nationals! He still trains and competes occasionally, despite his busy schedule.

To solve a differential equation with two initial conditions—that is, given d^{2}y/dx^{2}, find y—first take the integral of the expression with respect to x. The answer, dy/dx, is some expression + c. To solve for c, plug in the initial conditions y'(x_{0})=y'_{0}. Then, plug in c to find a solution for dy/dx. By repeating this procedure (integrating and using the initial condition y(x_{0})=y_{0} to find c), solve for y.

Let’s try a slightly harder differential equation problem. Here I want to find the general solution of F’’(x) equals 2 over x cubed. Now remember, if I knew something about the second derivative of a function, I can get information about the first derivative by integrating.

So that’s what I’m going to do. We’ll get f’(x) by integrating 2 over x cubed with respect to x. Now I integrated this by first pulling the 2 outside, and rewriting this 1 over x cubed as x to the -3. I’m going to use the power rule on this.

The antiderivative of x then I get 3 x to the -2. Remember you add 1 to the exponent, -3 plus 1, -2. So this is 2 times x to the -2 and I have to divide by -2 as well. Then I add a constant. So this function becomes f’(x) equals, these cancel leaving –x to the -2, plus c. That’s f’(x), I want to find the f(x). So I have to integrate this again.

F(x) is the integral of –x to the -2 plus c, with respect to x. So first, I recognize that the above derivative of x to the -2 is x to the -1 over -1. So this is going to be minus because of this minus. X to the -1 over -1 and then when I antidifferentiate the plus c, the antiderivative of a constant is that constant times x. So it will be plus cx. And then I have to add another constant but don’t add plus c. You don’t want to be the same size as this. These might be different values, these two parameters. So change the name, call it d.

And so that means my final answer is f(x) equals, these negatives cancel, giving me x to the -1 plus cx plus d. This is my general solution to this differential equation. It's get two parameters that’s generally going to happen when you are solving a second order differential equation. That’s one of the reasons why we need two initial conditions to find a particular solution. And that’s what we are going to do next, so let’s take a look at part b.

Find the particular solution that satisfies f’(1) equals 3 and f(1) equals 0. So let’s recall two things; first, the f’(x) was –x to the -2 plus c. And second, that the final function was f(x) equals x to the -1 plus cx plus d.

You want to use both of these because you have an initial condition about f’ and f. Take a look at this equation. It only has one parameter, so this equation will allow me to solve for c. Let me use this initial condition when x is 1, f’ has to be 3. So I’ll write 3 equals -1 to the -2 plus c.

1 to the negative 2 is just 1 so this is minus 1. 3 equals minus 1 plus c. So add one to both sides and get c equals 4. So that’s one of my constants found. Look at this equation now I know that c is 4. I can use this second initial condition to solve for d. So when x is 1 f(x) is going to be 0. So this equation gives me 0 equals 1 to the -1 plus c times 1, now c is 4.

4 times 1 plus d. 1 to the -1 is 1. So this is 1 plus 4 , 5 . This is the same as 0 equals 5 plus d. So d equals -5. That means my particular solution comes from here, is f(x) equals x to the -1 plus cx. Remember c is 4, 4x, plus d, d was -5 so minus 5. This is my particular solution to my second order differential equation with two initial conditions.

Please enter your name.

Are you sure you want to delete this comment?

###### Norm Prokup

PhD. in Mathematics, University of Rhode Island

B.S. in Mechanical Engineering, Cornell University

He uses really creative examples for explaining tough concepts and illustrates them perfectly on the whiteboard. It's impossible to get lost during his lessons.

Thiswas EXCELLENT! I am a math teacher and have been looking for an easy/logical way to explain the lateral area of a cone to my students and this was incredibly helpful, thank you very much!”

I just learned more In 3 minutes of polygons here than I do in 3 weeks in my math class”

Hahaha, his examples are the same problems of my math HW!”

##### Concept (1)

##### Sample Problems (3)

Need help with a problem?

Watch expert teachers solve similar problems.

## Comments (0)

Please Sign in or Sign up to add your comment.

## ·

Delete